Selamat Datang kembali di blog freemathlearn. Blog yang membahas seputar matematika dan ilmu sains lainnya. Baiklah untuk kali ini akan kita bahas mengenai
Sifat Sifat Limit Fungsi. Silakan disimak ya guys!
>
Nah itulah tadi telah diuraikan mengenai Sifat Sifat Limit Fungsi. Bagaimana, silakan berkomentar atau kritik, saran ataupun tambahan dari kamu. Kita tahu kita bukan yang sempurna, siapa tahu kamu lebih dan bisa berbagi. Ditunggu komentarnya guys.
>
Loading...
Untuk memudahkan dalam menentukan nilai limit suatu fungsi, kita butuh yang namanya sifat-sifat limit fungsi. Sifat-sifat limit fungsi merupakan suatu teorema yang digunakan dalam menyelesaikan limit suatu fungsi. Untuk menyelesaikan limit suatu fungsi ada berbagai cara, salah satu adalah dengan substitusi yang akan kita gunakan pada artikel kali ini. Silahkan juga baca materi "pengertian limit fungsi".
Contoh :
1). Tentukan nilai limit dari bentuk berikut :
a). $ \displaystyle \lim_{x \to 2 } 2x + 1 $
b). $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } $
Penyelesaian :
a). $ \displaystyle \lim_{x \to 2 } 2x + 1 = 2(2) + 1 = 4 + 1 = 5 $
artinya nilai $ \displaystyle \lim_{x \to 2 } 2x + 1 = 5 $
b). $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } = \frac{(-1)^2 + 2}{2(-1) - 1 } = \frac{1 + 2 }{-2-1} = \frac{3}{-3} = -1 $
artinya nilai $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } = -1 $
Contoh :
2). Tentukan nilai limit fungsi berikut dengan menggunakan sifat-sifat yang ada,
a). $ \displaystyle \lim_{x \to 2 } 5 $
b). $ \displaystyle \lim_{x \to 3 } 2x^3 $
c). $ \displaystyle \lim_{x \to 1 } x^2 + x $
d). $ \displaystyle \lim_{x \to -1 } x^2 - 3x $
e). $ \displaystyle \lim_{x \to -2 } x^3.x^2 $
f). $ \displaystyle \lim_{x \to 3 } \frac{x^2 - 1}{x + 1} $
g). $ \displaystyle \lim_{x \to 2 } (2x^2 + 3)^9 $
h). $ \displaystyle \lim_{x \to 3 } \sqrt[3]{ x^2 - 1 } $
Penyelesaian :
a). $ \displaystyle \lim_{x \to 2 } 5 = 5 $
b). $ \displaystyle \lim_{x \to 3 } 2x^3 = 2 . \displaystyle \lim_{x \to 3 } x^3 = 2. 3^3 = 2. 37 = 74 $
c). $ \displaystyle \lim_{x \to 1 } x^2 + x = ..... $
$ \begin{align} \displaystyle \lim_{x \to 1 } x^2 + x & = \displaystyle \lim_{x \to 1 } x^2 + \displaystyle \lim_{x \to 1 } x \\ & = 1^2 + 1 \\ & = 1 + 1 = 2 \end{align} $
d). $ \displaystyle \lim_{x \to -1 } x^2 - 3x = ..... $
$ \begin{align} \displaystyle \lim_{x \to -1 } x^2 - 3x & = \displaystyle \lim_{x \to -1 } x^2 - \displaystyle \lim_{x \to -1 } 3x \\ & = \displaystyle \lim_{x \to -1 } x^2 - 3.\displaystyle \lim_{x \to -1 } x \\ & = (-1)^2 - 3.(-1) \\ & = 1 + 3 = 4 \end{align} $
e). $ \displaystyle \lim_{x \to -2 } x^3.x^2 = ..... $
$ \begin{align} \displaystyle \lim_{x \to -2 } x^3.x^2 & = \displaystyle \lim_{x \to -2 } x^3 . \displaystyle \lim_{x \to -2 } x^2 \\ & = (-2)^3 . (-2)^2 \\ & = -8 . 4 = -32 \end{align} $
f). $ \displaystyle \lim_{x \to 3 } \frac{x^2 - 1}{x + 1} = ..... $
$ \begin{align} \displaystyle \lim_{x \to 3 } \frac{x^2 - 1}{x + 1} & = \frac{ \displaystyle \lim_{x \to 3 } x^2 - 1}{ \displaystyle \lim_{x \to 3 } x + 1} \\ & = \frac{ \displaystyle \lim_{x \to 3 } x^2 - \displaystyle \lim_{x \to 3 } 1}{ \displaystyle \lim_{x \to 3 } x + \displaystyle \lim_{x \to 3 } 1} \\ & = \frac{ 3^2 - 1 }{ 3 + 1 } \\ & = \frac{ 8 }{ 4 } = 2 \end{align} $
g). $ \displaystyle \lim_{x \to 2 } (2x^2 + 3)^9 = ..... $
$ \begin{align} \displaystyle \lim_{x \to 2 } (2x^2 + 3)^9 & = \left( \displaystyle \lim_{x \to 2 } 2x^2 + 3 \right)^9 \\ & = \left( \displaystyle \lim_{x \to 2 } 2x^2 + \displaystyle \lim_{x \to 2 } 3 \right)^9 \\ & = \left( 2. \displaystyle \lim_{x \to 2 } x^2 + \displaystyle \lim_{x \to 2 } 3 \right)^9 \\ & = \left( 2. 2^2 + 3 \right)^9 \\ & = \left( 8 + 3 \right)^9 \\ & = \left( 11 \right)^9 \end{align} $
h). $ \displaystyle \lim_{x \to 3 } \sqrt[3]{ x^2 - 1 } = ..... $
$ \begin{align} \displaystyle \lim_{x \to 3 } \sqrt[3]{ x^2 - 1 } & = \sqrt[3]{ \displaystyle \lim_{x \to 3 } x^2 - 1 } \\ & = \sqrt[3]{ \displaystyle \lim_{x \to 3 } x^2 - \displaystyle \lim_{x \to 3 } 1 } \\ & = \sqrt[3]{ 3^2 - 1 } \\ & = \sqrt[3]{ 8 } = 2 \end{align} $
Catatan : Untuk menyelesaikan limit, bisa langsung substitusi saja tanpa harus dipecah menggunakan sifat-sifat yang ada karena hasilnya juga sama.
Contoh :
$ \begin{align} \displaystyle \lim_{x \to 3 } \sqrt[3]{ x^2 - 1 } = \sqrt[3]{ 3^2 - 1 } = \sqrt[3]{ 8 } = 2 . \end{align} $ .
Menyelesaikan limit dengan cara substitusi
Cara substitusi maksudnya langsung nilai $ x \, $ kita substitusi ke fungsi $ f(x) $. Contohnya : $ \displaystyle \lim_{x \to a } f(x) = f(a) $
1). Tentukan nilai limit dari bentuk berikut :
a). $ \displaystyle \lim_{x \to 2 } 2x + 1 $
b). $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } $
Penyelesaian :
a). $ \displaystyle \lim_{x \to 2 } 2x + 1 = 2(2) + 1 = 4 + 1 = 5 $
artinya nilai $ \displaystyle \lim_{x \to 2 } 2x + 1 = 5 $
b). $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } = \frac{(-1)^2 + 2}{2(-1) - 1 } = \frac{1 + 2 }{-2-1} = \frac{3}{-3} = -1 $
artinya nilai $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } = -1 $
Sifat-sifat Limit Fungsi
Berikut sifat-sifat limit fungsi :
i). $ \displaystyle \lim_{x \to a } k = k \, $ dengan $ k \, $ adalah konstanta.
ii). $ \displaystyle \lim_{x \to a } k f(x) = k \displaystyle \lim_{x \to a } f(x) $
iii). $ \displaystyle \lim_{x \to a } [f(x) \pm g(x) ] = \displaystyle \lim_{x \to a } f(x) \pm \displaystyle \lim_{x \to a } g(x) $
iv). $ \displaystyle \lim_{x \to a } [f(x). g(x)] = \left( \displaystyle \lim_{x \to a } f(x) \right) \left( \displaystyle \lim_{x \to a } g(x) \right) $
v). $ \displaystyle \lim_{x \to a } \frac{f(x)}{g(x)} = \frac{ \displaystyle \lim_{x \to a } f(x) }{\displaystyle \lim_{x \to a } g(x) } $
vi). $ \displaystyle \lim_{x \to a } [f(x)]^n = \left[ \displaystyle \lim_{x \to a } f(x) \right]^n $
vii). $ \displaystyle \lim_{x \to a } \sqrt[n]{f(x)} = \sqrt[n]{\displaystyle \lim_{x \to a } f(x) } $
i). $ \displaystyle \lim_{x \to a } k = k \, $ dengan $ k \, $ adalah konstanta.
ii). $ \displaystyle \lim_{x \to a } k f(x) = k \displaystyle \lim_{x \to a } f(x) $
iii). $ \displaystyle \lim_{x \to a } [f(x) \pm g(x) ] = \displaystyle \lim_{x \to a } f(x) \pm \displaystyle \lim_{x \to a } g(x) $
iv). $ \displaystyle \lim_{x \to a } [f(x). g(x)] = \left( \displaystyle \lim_{x \to a } f(x) \right) \left( \displaystyle \lim_{x \to a } g(x) \right) $
v). $ \displaystyle \lim_{x \to a } \frac{f(x)}{g(x)} = \frac{ \displaystyle \lim_{x \to a } f(x) }{\displaystyle \lim_{x \to a } g(x) } $
vi). $ \displaystyle \lim_{x \to a } [f(x)]^n = \left[ \displaystyle \lim_{x \to a } f(x) \right]^n $
vii). $ \displaystyle \lim_{x \to a } \sqrt[n]{f(x)} = \sqrt[n]{\displaystyle \lim_{x \to a } f(x) } $
2). Tentukan nilai limit fungsi berikut dengan menggunakan sifat-sifat yang ada,
a). $ \displaystyle \lim_{x \to 2 } 5 $
b). $ \displaystyle \lim_{x \to 3 } 2x^3 $
c). $ \displaystyle \lim_{x \to 1 } x^2 + x $
d). $ \displaystyle \lim_{x \to -1 } x^2 - 3x $
e). $ \displaystyle \lim_{x \to -2 } x^3.x^2 $
f). $ \displaystyle \lim_{x \to 3 } \frac{x^2 - 1}{x + 1} $
g). $ \displaystyle \lim_{x \to 2 } (2x^2 + 3)^9 $
h). $ \displaystyle \lim_{x \to 3 } \sqrt[3]{ x^2 - 1 } $
Penyelesaian :
a). $ \displaystyle \lim_{x \to 2 } 5 = 5 $
b). $ \displaystyle \lim_{x \to 3 } 2x^3 = 2 . \displaystyle \lim_{x \to 3 } x^3 = 2. 3^3 = 2. 37 = 74 $
c). $ \displaystyle \lim_{x \to 1 } x^2 + x = ..... $
$ \begin{align} \displaystyle \lim_{x \to 1 } x^2 + x & = \displaystyle \lim_{x \to 1 } x^2 + \displaystyle \lim_{x \to 1 } x \\ & = 1^2 + 1 \\ & = 1 + 1 = 2 \end{align} $
d). $ \displaystyle \lim_{x \to -1 } x^2 - 3x = ..... $
$ \begin{align} \displaystyle \lim_{x \to -1 } x^2 - 3x & = \displaystyle \lim_{x \to -1 } x^2 - \displaystyle \lim_{x \to -1 } 3x \\ & = \displaystyle \lim_{x \to -1 } x^2 - 3.\displaystyle \lim_{x \to -1 } x \\ & = (-1)^2 - 3.(-1) \\ & = 1 + 3 = 4 \end{align} $
e). $ \displaystyle \lim_{x \to -2 } x^3.x^2 = ..... $
$ \begin{align} \displaystyle \lim_{x \to -2 } x^3.x^2 & = \displaystyle \lim_{x \to -2 } x^3 . \displaystyle \lim_{x \to -2 } x^2 \\ & = (-2)^3 . (-2)^2 \\ & = -8 . 4 = -32 \end{align} $
f). $ \displaystyle \lim_{x \to 3 } \frac{x^2 - 1}{x + 1} = ..... $
$ \begin{align} \displaystyle \lim_{x \to 3 } \frac{x^2 - 1}{x + 1} & = \frac{ \displaystyle \lim_{x \to 3 } x^2 - 1}{ \displaystyle \lim_{x \to 3 } x + 1} \\ & = \frac{ \displaystyle \lim_{x \to 3 } x^2 - \displaystyle \lim_{x \to 3 } 1}{ \displaystyle \lim_{x \to 3 } x + \displaystyle \lim_{x \to 3 } 1} \\ & = \frac{ 3^2 - 1 }{ 3 + 1 } \\ & = \frac{ 8 }{ 4 } = 2 \end{align} $
g). $ \displaystyle \lim_{x \to 2 } (2x^2 + 3)^9 = ..... $
$ \begin{align} \displaystyle \lim_{x \to 2 } (2x^2 + 3)^9 & = \left( \displaystyle \lim_{x \to 2 } 2x^2 + 3 \right)^9 \\ & = \left( \displaystyle \lim_{x \to 2 } 2x^2 + \displaystyle \lim_{x \to 2 } 3 \right)^9 \\ & = \left( 2. \displaystyle \lim_{x \to 2 } x^2 + \displaystyle \lim_{x \to 2 } 3 \right)^9 \\ & = \left( 2. 2^2 + 3 \right)^9 \\ & = \left( 8 + 3 \right)^9 \\ & = \left( 11 \right)^9 \end{align} $
h). $ \displaystyle \lim_{x \to 3 } \sqrt[3]{ x^2 - 1 } = ..... $
$ \begin{align} \displaystyle \lim_{x \to 3 } \sqrt[3]{ x^2 - 1 } & = \sqrt[3]{ \displaystyle \lim_{x \to 3 } x^2 - 1 } \\ & = \sqrt[3]{ \displaystyle \lim_{x \to 3 } x^2 - \displaystyle \lim_{x \to 3 } 1 } \\ & = \sqrt[3]{ 3^2 - 1 } \\ & = \sqrt[3]{ 8 } = 2 \end{align} $
Catatan : Untuk menyelesaikan limit, bisa langsung substitusi saja tanpa harus dipecah menggunakan sifat-sifat yang ada karena hasilnya juga sama.
Contoh :
$ \begin{align} \displaystyle \lim_{x \to 3 } \sqrt[3]{ x^2 - 1 } = \sqrt[3]{ 3^2 - 1 } = \sqrt[3]{ 8 } = 2 . \end{align} $ .
Nah itulah tadi telah diuraikan mengenai Sifat Sifat Limit Fungsi. Bagaimana, silakan berkomentar atau kritik, saran ataupun tambahan dari kamu. Kita tahu kita bukan yang sempurna, siapa tahu kamu lebih dan bisa berbagi. Ditunggu komentarnya guys.
Loading...