Soal dan Pembahasan Fungsi Logaritma

Selamat Datang kembali di blog freemathlearn. Blog yang membahas seputar matematika dan ilmu sains lainnya. Baiklah untuk kali ini akan kita bahas mengenai Soal dan Pembahasan Fungsi Logaritma. Silakan disimak ya guys!
>
Loading...
         Fungsi Logaritma adalah suatu fungsi yang memuat bentuk logaritma. Selain bisa menentukan nilai fungsi logaritmanya, juga bisa menggambar grafik fungsi logaritmanya. Terkadang juga ada soal yang melibatkan nilai maksimum atau nilai minimum suatu bentuk fungsi logaritma.

         Fungsi Logaritma bentuk $ f(x) = {}^a \, \log g(x) \, $ memiliki karakteristik salah satunya berdasarkan nilai basisnya $ (a) $, yaitu naik atau turunnya bentuk grafik fungsi kuadratnya. Fungsi logaritma yang dipelajari pada artikel ini adalah fungsi kuadrat yang bentuknya sederhana saja khususnya yang akan digambar grafiknya. Namun fungsi kuadrat yang ada kaitannya dengan nilai maksimum atau minimum fungsi kuadrat tersebut, fungsi yang kita bahas lebih kompleks lagi. Bentuk numerus pada fungsi logarimta juga bisa dikaitkan dengan bentuk fungsi kuadrat, sehingga kita harus mengingat kembali nilai maksimum dan minimum fungsi kuadrat.

Adapun bentuk umum fungsi logaritma sederhana :
                                    $ f(x) = {}^a \log x $
dengan $ a > 0 , \, a \neq 1, \, $ dan $ x > 0 \, $ serta $ x \, $ adalah variabel bebasnya.

Grafik fungsi logaritma
         Bentuk grafik fungsi logaritma $ f(x) = {}^a \log x \, $ bergantung dari nilai basisnya (bilangan pokok). Jika $ a > 1 , \, $ maka grafiknya naik , dan jika $ 0 < a < 1 , \, $ maka grafiknya turun. Untuk lebih jelasnya, perhatikan grafiknya berikut.
Contoh 1.
Gambarlah grafik fungsi logaritma $ f(x) = {}^2 \log x $ ?
Penyelesaian : nilai $ a = 2 , \, $ sehingga grafiknya naik
Contoh 2.
Gambarlah grafik fungsi logaritma $ f(x) = {}^\frac{1}{3} \log x $ ?
Penyelesaian : nilai $ a = \frac{1}{3} , \, $ sehingga grafiknya turun

Nilai Maksimum atau Minimum fungsi logaritma
         Nilai Maksimum atau minimum fungsi logaritma $ f(x) = {}^a \log g(x) \, $ dengan $ g(x) > 0 , \, $ dapat ditentukan berdasarkan nilai basisnya $(a)$ :
*). Untuk $ a > 1 $
         Nilai maksimum $ f(x) \, $ diperoleh ketika nilai $ g(x) \, $ maksimum
         Nilai minimum $ f(x) \, $ diperoleh ketika nilai $ g(x) \, $ minimum
*). Untuk $ 0 < a < 1 $
         Nilai maksimum $ f(x) \, $ diperoleh ketika nilai $ g(x) \, $ minimum
         Nilai minimum $ f(x) \, $ diperoleh ketika nilai $ g(x) \, $ maksimum
         Untuk lebih jelasnya, yuk kita perhatikan contoh berikut ini.

Contoh 3.
Tentukan nilai minimum dari fungsi $ f(x) = {}^2 \log (x^2 - 2x + 9 ) \, $ ?
Penyelesaian :
$\spadesuit \, $ Nilai basisnya ($ a = 2 $) lebih dari 1, sehingga $ f(x) \, $ minimum ketika nilai $ g(x) = x^2 - 2x + 9 \, $ juga minimum. Karena bentuk $ g(x) = x^2 - 2x + 9 \, $ adalah fungsi kuadrat, maka nilai minimum $ g(x) = x^2 - 2x + 9 \, $ diperoleh ketika $ x = \frac{-b}{2a} , \, $ yaitu :
$ x = \frac{-b}{2a} = \frac{-(-2)}{2.1} = 1 $
artinya bentuk $ g(x) = x^2 - 2x + 9 \, $ minimum pada saat $ x = 1 \, $ yang mengakibatkan nilai fungsi $ f(x) \, $ juga minimum.
$\spadesuit \, $ Menentukan nilai minimum fungsi logaritmanya
Substitusi nilai $ x = 1 \, $ ke $ f(x) \, $ :
$\begin{align} f(x) & = {}^2 \log (x^2 - 2x + 9 ) \\ f_\text{minimum} & = f(1) = {}^2 \log (1^2 - 2.1 + 9 ) \\ & = {}^2 \log (8) \\ & = {}^2 \log (2^3) \\ f_\text{minimum} & = 3.{}^2 \log 2 = 3.1 = 3 \end{align} $
Jadi, nilai minimum fungsi $ f(x) = {}^2 \log (x^2 - 2x + 9 ) \, $ adalah 3 . $ \heartsuit $

Contoh 4.
Tentukan nilai maksimum dari fungsi $ f(x) = {}^\frac{1}{3} \log \left( (x+3)^2 + 1 \right) \, $ ?
Penyelesaian :
$\clubsuit \,$ Nilai basisnya ($ a = \frac{1}{3} $) kurang dari 1, sehingga $ f(x) \, $ maksimum ketika nilai $ g(x) = \left( (x+3)^2 + 1 \right) \, $ minimum. Nilai minimum dari $ g(x) = \left( (x+3)^2 + 1 \right) \, $ diperoleh ketika $ x = -3 $
$\clubsuit \,$ Menentukan nilai maksimum fungsi logaritmanya
Substitusi nilai $ x = -3 \, $ ke $ f(x) \, $ :
$\begin{align} f(x) & = {}^\frac{1}{3} \log \left( (x+3)^2 + 1 \right) \\ f_\text{maksimum} & = f(-3) = {}^\frac{1}{3} \log \left( (-3+3)^2 + 1 \right) \\ & = {}^\frac{1}{3} \log 1 \\ f_\text{maksimum} & = 0 \end{align} $
Jadi, nilai maksimum fungsi $ f(x) = {}^\frac{1}{3} \log \left( (x+3)^2 + 1 \right) \, $ adalah 0 . $ \heartsuit $

         Bagaimana dengan artikel fungsi kuadrat pada artikel ini? Mudah-mudahan bisa membantu dalam mempelajari fungsi logaritma. Untuk tipe soal ujian nasional, soal yang sering keluar yang berkaitan dengan fungsi logaritma adalah bentuk grafiknya baik grafik fungsi aslinya atau grafik inversnya. Dengan latihan soal-soal yang banyak, pasti teman-teman akan bisa mengerjakan soal-soal yang berkaitan dengan fungsi kuadrat atau grafiknya.
.


Nah itulah tadi telah diuraikan mengenai Soal dan Pembahasan Fungsi Logaritma. Bagaimana, silakan berkomentar atau kritik, saran ataupun tambahan dari kamu. Kita tahu kita bukan yang sempurna, siapa tahu kamu lebih dan bisa berbagi. Ditunggu komentarnya guys.
Loading...