Selamat Datang kembali di blog freemathlearn. Blog yang membahas seputar matematika dan ilmu sains lainnya. Baiklah untuk kali ini akan kita bahas mengenai
Contoh Soal dan Pembahasan Persamaan Lingkaran. Silakan disimak ya guys!
>
Nah itulah tadi telah diuraikan mengenai Contoh Soal dan Pembahasan Persamaan Lingkaran. Bagaimana, silakan berkomentar atau kritik, saran ataupun tambahan dari kamu. Kita tahu kita bukan yang sempurna, siapa tahu kamu lebih dan bisa berbagi. Ditunggu komentarnya guys.
>
Loading...
Persamaan Lingkaran merupakan materi yang ada kaitannya dengan irisan kerucut. Lingkaran adalah tempat kedudukan atau himpunan titik-titik yang berjarak sama terhadap suatu titik yang tertentu. Titik tertentu tersebut dinamakan pusat lingkaran dan jarak yang tetap tersebut dinamakan jari-jari lingkaran.
.
Dari gambar di atas, titik O adalah pusat lingkaran. Titik A, B, C, D terletak pada lingkaran, maka OA = OB = OC = OD adalah jari-jari lingkaran = $r$.
Contoh :
Tentukan persamaan lingkaran yang berpusat O($0,0$) dan jari-jarinya 5 !
Penyelesaian :
*). Pusatnya O($0,0$) dan $ r = 5 $
$\begin{align} x^2 + y^2 & = r^2 \\ x^2 + y^2 & = 5^2 \\ x^2 + y^2 & = 25 \end{align} $ Jadi, persamaan lingkarannya adalah $ x^2 + y^2 = 25 $ .
Contoh :
Tentukan persamaan lingkaran yang berpusat di (-2,1) dengan jari-jari 3 !
Penyelesaian :
*). Pusat $(a,b)=(-2,1) \, $ dan $ r = 3 $
$\begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-(-2))^2 + (y-1)^2 & = 3^2 \\ (x+2)^2 + (y-1)^2 & = 9 \\ (x^2 + 4x + 4) + (y^2 - 2y + 1) & = 9 \\ x^2 + y^2 + 4x - 2y + 5 & = 9 \\ x^2 + y^2 + 4x - 2y - 4 & = 0 \end{align} $
Jadi, persamaan lingakarannya : $ x^2 + y^2 + 4x - 2y - 4 = 0 $
Contoh :
Dari persamaan lingkaran $ x^2 + y^2 - 4x + 6y - 3 = 0 \, $, tentukan pusat dan jari-jarinya !
Penyelesaian :
*). Persamaan bentuk umumnya : $ x^2 + y^2 - 4x + 6y - 3 = 0 \, $
artinya nilai $ A = -4, \, B = 6, \, $ dan $ C = -3 $
*). Menentukan pusat dan jari-jari lingkarannya.
Pusat : $ A(a,b) = \left( -\frac{A}{2}, -\frac{B}{2} \right) = \left( -\frac{-4}{2}, -\frac{6}{2} \right) = (2, -3) $
Jari-jari : $ r^2 = a^2 + b^2 - C \rightarrow r^2 = 2^2 + (-3)^2 - (-3) \rightarrow r^2 = 16 \rightarrow r = 4 $
atau cara kedua :
Jari-jari : $ r^2 = \frac{A^2}{4} + \frac{B^2}{4} - C \rightarrow r^2 = \frac{((-4)^2}{4} + \frac{6^2}{4} - (-3) \rightarrow r^2 = 16 \rightarrow r = 4 . $
Jadi, pusat lingkaran ($ 2,-3$) dan jari-jarinya $ r = 4 $.
Contoh :
Tentukan persamaan lingkaran yang memiliki titik pusat (1,2) dan melalui titik (3, 5)!
Penyelesaian :
*). Menentukan jari-jari lingkaran (jarak titik (1,2) dan (3,5)) :
$ \begin{align} r & = \sqrt{(3-1)^2 + (5-2)^2} \\ r & = \sqrt{(2)^2 + (3)^2} \\ r & = \sqrt{13} \end{align} $
*). Menyusun persamaan lingkaran dengan pusat $(a,b)=(1,2) $ dan $ r = \sqrt{13} $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-1)^2 + (y-2)^2 & = (\sqrt{13})^2 \\ (x-1)^2 + (y-2)^2 & = 13 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x-1)^2 + (y-2)^2 = 13 $
Contoh :
Tentukan persamaan lingkaran yang berpusat di titik (-1,2) dan lingkaran menyinggung garis $ y = 2x + 9 $ !
Penyelesaian :
*). Menentukan jari-jari lingkaran (jarak titik (-1,2) ke garis) :
garis : $ y = 2x + 9 \rightarrow 2x-y + 9 = 0 $
$ \begin{align} r & = \left| \frac{m.a + n.b + c}{\sqrt{m^2 + n^2}} \right| \\ & = \left| \frac{2x-y + 9}{\sqrt{2^2 + (-1)^2}} \right| \\ & = \left| \frac{2.(-1)-2 + 9}{\sqrt{5}} \right| \\ & = \left| \frac{5}{\sqrt{5}} \right| \\ & = \frac{5}{\sqrt{5}} . \frac{\sqrt{5}}{\sqrt{5}} = \sqrt{5} \end{align} $
*). Menyusun persamaan lingkaran dengan pusat $(a,b)=(-1,2) $ dan $ r = \sqrt{5} $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-(-1))^2 + (y-2)^2 & = (\sqrt{5})^2 \\ (x+1)^2 + (y-2)^2 & = 5 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x+1)^2 + (y-2)^2 = 5 $
Contoh :
1). Tentukan persamaan lingkaran yang memiliki pusat (2,5) dan lingkaran menyinggung sumbu X !
Penyelesaian :
*). Lingkaran menyinggung sumbu X, artinya jari-jari : $ r = b = 5 $
*). Persamaan lingkarannya dengan pusat $(a,b) = (2,5) \, $ dan $ r = 5 $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-2)^2 + (y-5)^2 & = 5^2 \\ (x-2)^2 + (y-5)^2 & = 25 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x-2)^2 + (y-5)^2 = 25 $
2). Tentukan persamaan lingkaran yang memiliki pusat (-3,1) dan lingkaran menyinggung sumbu Y !
Penyelesaian :
*). Lingkaran menyinggung sumbu Y, artinya jari-jari : $ r = a = -3 $
karena jari-jari selalu positif, maka $ r = |-3| = 3 $
*). Persamaan lingkarannya dengan pusat $(a,b) = (-3,1) \, $ dan $ r = 3 $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-(-3))^2 + (y-1)^2 & = 3^2 \\ (x+3)^2 + (y-1)^2 & = 9 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x+3)^2 + (y-1)^2 = 9 $
3). Tentukan persamaan lingkaran yang memiliki pusat (6,6) dan lingkaran menyinggung kedua sumbu (sumbu X dan sumbu Y)!
Penyelesaian :
*). Lingkaran menyinggung kedua sumbu, artinya jari-jari : $ r = a = b = 6 $
*). Persamaan lingkarannya dengan pusat $(a,b) = (6,6) \, $ dan $ r = 6 $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-6)^2 + (y-6)^2 & = 6^2 \\ (x-6)^2 + (y-6)^2 & = 36 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x-6)^2 + (y-6)^2 = 36 $
Contoh :
Jika titik A(1,3) dan titik B(5,7) merupakan diameter suatu lingkaran, tentukan persamaan lingkaran tersebut!
Penyelesaian :
*).Menentukan titik pusat lingkaran ($a,b$) :
$ \begin{align} (a,b) & = \left( \frac{x_1+x_2}{2} , \frac{y_1 + y_2}{2} \right) \\ & = \left( \frac{1 + 5}{2} , \frac{3 + 7}{2} \right) \\ & = (3,5) \end{align} $
*). Menentukan jari-jari lingkaran :
$ \begin{align} r & = \frac{1}{2}|AB| = \frac{1}{2}\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \\ & = \frac{1}{2}\sqrt{(5-1)^2 + (7-3)^2} \\ & = \frac{1}{2}\sqrt{4^2 + 4^2} \\ & = \frac{1}{2}\sqrt{32} \\ & = \frac{1}{2}. ( 4 \sqrt{2} ) \\ r & = 2 \sqrt{2} \end{align} $
*). Persamaan lingkarannya dengan pusat $(a,b) = (3,5) \, $ dan $ r = 2\sqrt{2} $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-3)^2 + (y-5)^2 & = (2\sqrt{2})^2 \\ (x-3)^2 + (y-5)^2 & = 8 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x-3)^2 + (y-5)^2 = 8 $
Contoh :
Tentukan persamaan lingkaran yang melalui titik (3, -1), (5, 3), dan (6, 2) kemudian tentukan pula pusat dan jari-jari lingkaran. !
Penyelesaian :
*). Bentuk Umum persamaan lingkaran : $ x^2 + y^2 + Ax + By + C = 0 $
*). Substitusi ketiga titik yang dilalui ke bentuk umum.
$ \begin{align} (x,y) = (3,-1) \rightarrow x^2 + y^2 + Ax + By + C & = 0 \\ 3^2 + (-1)^2 + A.3 + B.(-1) + C & = 0 \\ 9 + 1 + 3A - B + C & = 0 \\ 3A - B + C & = - 10 \, \, \, \, \text{....prs(i)} \\ (x,y) = (5,3) \rightarrow x^2 + y^2 + Ax + By + C & = 0 \\ 5^2 + 3^2 + A.5 + B.3 + C & = 0 \\ 25 + 9 + 5A + 3B + C & = 0 \\ 5A + 3B + C & = - 34 \, \, \, \, \text{....prs(ii)} \\ (x,y) = (6,2) \rightarrow x^2 + y^2 + Ax + By + C & = 0 \\ 6^2 + 2^2 + A.6 + B.2 + C & = 0 \\ 36 + 4 + 6A + 2B + C & = 0 \\ 6A + 2B + C & = - 40 \, \, \, \, \text{....prs(iii)} \end{align} $
Terbentuklah 3 persamaan yaitu
$ \begin{align} 3A - B + C & = - 10 \, \, \, \, \text{....prs(i)} \\ 5A + 3B + C & = - 34 \, \, \, \, \text{....prs(ii)} \\ 6A + 2B + C & = - 40 \, \, \, \, \text{....prs(iii)} \end{align} $
*). Selesaikan ketiga persamaan tersebut dengan eliminasi dan substitusi, diperoleh nilai $ A = -8, \, B = -2, \, $ dan $ C = 12 $
Sehingga persamaan lingkarannya :
$ \begin{align} x^2 + y^2 + Ax + By + C & = 0 \\ x^2 + y^2 -8x -2y + 12 & = 0 \end{align} $
Jadi, persamaan lingkarannya adalah $ x^2 + y^2 -8x -2y + 12 = 0 $ .
.
Dari gambar di atas, titik O adalah pusat lingkaran. Titik A, B, C, D terletak pada lingkaran, maka OA = OB = OC = OD adalah jari-jari lingkaran = $r$.
Persamaan lingkaran dengan pusat (0,0) dan jari-jari $ r$
Misalkan ada titik A($x,y$) terletak pada lingkaran yang berpusat di O($0,0$) seperti gambar berikut. Jari-jarinya adalah OA ( $ OA = r $ ).
Dengan menggunakan konsep jarak dua titik dari titik O($0,0$) ke titik A($x,y$), diperoleh :
$\begin{align} |OA| & = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \\ r & = \sqrt{(x-0)^2 + (y-0)^2} \\ r & = \sqrt{x^2 + y^2} \\ r^2 & = x^2 + y^2 \end{align} $
Jadi, persamaan lingkaran berpusat di O($0,0$) dengan jari-jari $ r $ :
$\begin{align} x^2 + y^2 = r^2 \end{align} $
Dengan menggunakan konsep jarak dua titik dari titik O($0,0$) ke titik A($x,y$), diperoleh :
$\begin{align} |OA| & = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \\ r & = \sqrt{(x-0)^2 + (y-0)^2} \\ r & = \sqrt{x^2 + y^2} \\ r^2 & = x^2 + y^2 \end{align} $
Jadi, persamaan lingkaran berpusat di O($0,0$) dengan jari-jari $ r $ :
$\begin{align} x^2 + y^2 = r^2 \end{align} $
Tentukan persamaan lingkaran yang berpusat O($0,0$) dan jari-jarinya 5 !
Penyelesaian :
*). Pusatnya O($0,0$) dan $ r = 5 $
$\begin{align} x^2 + y^2 & = r^2 \\ x^2 + y^2 & = 5^2 \\ x^2 + y^2 & = 25 \end{align} $ Jadi, persamaan lingkarannya adalah $ x^2 + y^2 = 25 $ .
Persamaan lingkaran dengan pusat A($a,b$) dan jari-jari $ r$
Misalkan ada titik B($x,y$) terletak pada lingkaran yang berpusat di A($a,b$) seperti gambar berikut. Jari-jarinya adalah AB ( $ AB = r $ ).
Dengan menggunakan konsep jarak dua titik dari titik A($a,b$) ke titik B($x,y$), diperoleh :
$\begin{align} |AB| & = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \\ r & = \sqrt{(x-a)^2 + (y-b)^2} \\ r^2 & = (x-a)^2 + (y-b)^2 \end{align} $
Jadi, persamaan lingkaran berpusat di A($a,b$) dengan jari-jari $ r $ :
$\begin{align} (x-a)^2 + (y-b)^2 = r^2 \end{align} $
Dengan menggunakan konsep jarak dua titik dari titik A($a,b$) ke titik B($x,y$), diperoleh :
$\begin{align} |AB| & = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \\ r & = \sqrt{(x-a)^2 + (y-b)^2} \\ r^2 & = (x-a)^2 + (y-b)^2 \end{align} $
Jadi, persamaan lingkaran berpusat di A($a,b$) dengan jari-jari $ r $ :
$\begin{align} (x-a)^2 + (y-b)^2 = r^2 \end{align} $
Tentukan persamaan lingkaran yang berpusat di (-2,1) dengan jari-jari 3 !
Penyelesaian :
*). Pusat $(a,b)=(-2,1) \, $ dan $ r = 3 $
$\begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-(-2))^2 + (y-1)^2 & = 3^2 \\ (x+2)^2 + (y-1)^2 & = 9 \\ (x^2 + 4x + 4) + (y^2 - 2y + 1) & = 9 \\ x^2 + y^2 + 4x - 2y + 5 & = 9 \\ x^2 + y^2 + 4x - 2y - 4 & = 0 \end{align} $
Jadi, persamaan lingakarannya : $ x^2 + y^2 + 4x - 2y - 4 = 0 $
Bentuk Umum Persamaan lingkaran
Bentuk umum persamaan lingkaran adalah $ \begin{align} x^2 + y^2 + Ax + By + C = 0 \end{align} \, $ yang diperoleh dari persamaan lingkaran $\begin{align} (x-a)^2 + (y-b)^2 = r^2 \end{align} $ .
Menentukan pusat dan jari-jari liingkaran dari bentuk umumnya :
$\begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x^2 - 2ax + a^2) + (y^2 - 2by + b^2) & = r^2 \\ x^2 + y^2 - 2ax - 2by + (a^2 + b^2 - r^2) & = 0 \\ \text{bentuk ini sama dengan } & \\ x^2 + y^2 + Ax + By + C = 0 \end{align} $
Sehingga diperoleh :
$\begin{align} A & = -2a \rightarrow a = -\frac{A}{2} \\ B & = -2b \rightarrow b = -\frac{B}{2} \\ C & = a^2 + b^2 - r^2 \rightarrow r^2 = a^2 + b^2 - C \\ r & = \sqrt{a^2 + b^2 - C} = \sqrt{(-\frac{A}{2})^2 + (-\frac{B}{2})^2 - C} = \sqrt{\frac{A^2}{4} + \frac{B^2}{4} - C} \end{align} $
Jadi, Pusat lingkaran dan jari-jarinya :
Pusat : $ A(a,b) = \left( -\frac{A}{2}, -\frac{B}{2} \right) $
Jari-jari : $ r^2 = a^2 + b^2 - C \, $ atau $ r^2 = \frac{A^2}{4} + \frac{B^2}{4} - C $
Menentukan pusat dan jari-jari liingkaran dari bentuk umumnya :
$\begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x^2 - 2ax + a^2) + (y^2 - 2by + b^2) & = r^2 \\ x^2 + y^2 - 2ax - 2by + (a^2 + b^2 - r^2) & = 0 \\ \text{bentuk ini sama dengan } & \\ x^2 + y^2 + Ax + By + C = 0 \end{align} $
Sehingga diperoleh :
$\begin{align} A & = -2a \rightarrow a = -\frac{A}{2} \\ B & = -2b \rightarrow b = -\frac{B}{2} \\ C & = a^2 + b^2 - r^2 \rightarrow r^2 = a^2 + b^2 - C \\ r & = \sqrt{a^2 + b^2 - C} = \sqrt{(-\frac{A}{2})^2 + (-\frac{B}{2})^2 - C} = \sqrt{\frac{A^2}{4} + \frac{B^2}{4} - C} \end{align} $
Jadi, Pusat lingkaran dan jari-jarinya :
Pusat : $ A(a,b) = \left( -\frac{A}{2}, -\frac{B}{2} \right) $
Jari-jari : $ r^2 = a^2 + b^2 - C \, $ atau $ r^2 = \frac{A^2}{4} + \frac{B^2}{4} - C $
Dari persamaan lingkaran $ x^2 + y^2 - 4x + 6y - 3 = 0 \, $, tentukan pusat dan jari-jarinya !
Penyelesaian :
*). Persamaan bentuk umumnya : $ x^2 + y^2 - 4x + 6y - 3 = 0 \, $
artinya nilai $ A = -4, \, B = 6, \, $ dan $ C = -3 $
*). Menentukan pusat dan jari-jari lingkarannya.
Pusat : $ A(a,b) = \left( -\frac{A}{2}, -\frac{B}{2} \right) = \left( -\frac{-4}{2}, -\frac{6}{2} \right) = (2, -3) $
Jari-jari : $ r^2 = a^2 + b^2 - C \rightarrow r^2 = 2^2 + (-3)^2 - (-3) \rightarrow r^2 = 16 \rightarrow r = 4 $
atau cara kedua :
Jari-jari : $ r^2 = \frac{A^2}{4} + \frac{B^2}{4} - C \rightarrow r^2 = \frac{((-4)^2}{4} + \frac{6^2}{4} - (-3) \rightarrow r^2 = 16 \rightarrow r = 4 . $
Jadi, pusat lingkaran ($ 2,-3$) dan jari-jarinya $ r = 4 $.
Pola dalam Menyusun Persamaan lingkaran
Untuk menentukan persamaan lingkaran, kita hanya membutuhkan pusatnya ($a,b$) dan jari-jari $ r $ . Hanya saja tidak semua soal sudah lengkap ada kedua-duanya (pusat dan jari-jarinya). Berikut beberapa pola yang biasanya berkaitan dengan menyusun persamaan lingkaran.
i). Diketahui pusat lingkaran ($a,b$) dan lingkaran melalui sembarang titik ($p,q$). Untuk menentukan persamaan lingkarannya, kita butuh jari-jarinya yaitu jarak titik pusat ke titik yang dilalui. Untuk jarak dua titik, silahkan baca materi "jarak dua titik".
Jari-jarinya : $ \begin{align} r = \sqrt{(p-a)^2 + (q-b)^2} \end{align} $
i). Diketahui pusat lingkaran ($a,b$) dan lingkaran melalui sembarang titik ($p,q$). Untuk menentukan persamaan lingkarannya, kita butuh jari-jarinya yaitu jarak titik pusat ke titik yang dilalui. Untuk jarak dua titik, silahkan baca materi "jarak dua titik".
Jari-jarinya : $ \begin{align} r = \sqrt{(p-a)^2 + (q-b)^2} \end{align} $
Tentukan persamaan lingkaran yang memiliki titik pusat (1,2) dan melalui titik (3, 5)!
Penyelesaian :
*). Menentukan jari-jari lingkaran (jarak titik (1,2) dan (3,5)) :
$ \begin{align} r & = \sqrt{(3-1)^2 + (5-2)^2} \\ r & = \sqrt{(2)^2 + (3)^2} \\ r & = \sqrt{13} \end{align} $
*). Menyusun persamaan lingkaran dengan pusat $(a,b)=(1,2) $ dan $ r = \sqrt{13} $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-1)^2 + (y-2)^2 & = (\sqrt{13})^2 \\ (x-1)^2 + (y-2)^2 & = 13 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x-1)^2 + (y-2)^2 = 13 $
ii). Diketahui pusat lingkaran ($a,b$) dan lingkaran menyinggung garis $ mx + ny + c = 0 $ . Jari-jari lingkarannya adalah jarak titik pusat ke garis. Untuk menghitung jaraknya, silahkan baca materi "jarak titik ke garis".
Jari-jarinya : $ \begin{align} r = \left| \frac{m.a + n.b + c}{\sqrt{m^2 + n^2}} \right| \end{align} $
Jari-jarinya : $ \begin{align} r = \left| \frac{m.a + n.b + c}{\sqrt{m^2 + n^2}} \right| \end{align} $
Tentukan persamaan lingkaran yang berpusat di titik (-1,2) dan lingkaran menyinggung garis $ y = 2x + 9 $ !
Penyelesaian :
*). Menentukan jari-jari lingkaran (jarak titik (-1,2) ke garis) :
garis : $ y = 2x + 9 \rightarrow 2x-y + 9 = 0 $
$ \begin{align} r & = \left| \frac{m.a + n.b + c}{\sqrt{m^2 + n^2}} \right| \\ & = \left| \frac{2x-y + 9}{\sqrt{2^2 + (-1)^2}} \right| \\ & = \left| \frac{2.(-1)-2 + 9}{\sqrt{5}} \right| \\ & = \left| \frac{5}{\sqrt{5}} \right| \\ & = \frac{5}{\sqrt{5}} . \frac{\sqrt{5}}{\sqrt{5}} = \sqrt{5} \end{align} $
*). Menyusun persamaan lingkaran dengan pusat $(a,b)=(-1,2) $ dan $ r = \sqrt{5} $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-(-1))^2 + (y-2)^2 & = (\sqrt{5})^2 \\ (x+1)^2 + (y-2)^2 & = 5 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x+1)^2 + (y-2)^2 = 5 $
iii). Diketahui pusat lingkaran ($a,b$) dan lingkaran menyinggung sumbu-sumbu.
*). Jika lingkaran Menyinggung sumbu X, maka jari-jarinya $ r = b $
*). Jika lingkaran menyinggung sumbu Y, maka jari-jarinya $ r = a $
*). Jika lingkaran menyinggung kedua sumbu, maka titik pusatnya ($p,p$), sehingga $ r = p $
*). Jika lingkaran Menyinggung sumbu X, maka jari-jarinya $ r = b $
*). Jika lingkaran menyinggung sumbu Y, maka jari-jarinya $ r = a $
*). Jika lingkaran menyinggung kedua sumbu, maka titik pusatnya ($p,p$), sehingga $ r = p $
Contoh :
1). Tentukan persamaan lingkaran yang memiliki pusat (2,5) dan lingkaran menyinggung sumbu X !
Penyelesaian :
*). Lingkaran menyinggung sumbu X, artinya jari-jari : $ r = b = 5 $
*). Persamaan lingkarannya dengan pusat $(a,b) = (2,5) \, $ dan $ r = 5 $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-2)^2 + (y-5)^2 & = 5^2 \\ (x-2)^2 + (y-5)^2 & = 25 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x-2)^2 + (y-5)^2 = 25 $
2). Tentukan persamaan lingkaran yang memiliki pusat (-3,1) dan lingkaran menyinggung sumbu Y !
Penyelesaian :
*). Lingkaran menyinggung sumbu Y, artinya jari-jari : $ r = a = -3 $
karena jari-jari selalu positif, maka $ r = |-3| = 3 $
*). Persamaan lingkarannya dengan pusat $(a,b) = (-3,1) \, $ dan $ r = 3 $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-(-3))^2 + (y-1)^2 & = 3^2 \\ (x+3)^2 + (y-1)^2 & = 9 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x+3)^2 + (y-1)^2 = 9 $
3). Tentukan persamaan lingkaran yang memiliki pusat (6,6) dan lingkaran menyinggung kedua sumbu (sumbu X dan sumbu Y)!
Penyelesaian :
*). Lingkaran menyinggung kedua sumbu, artinya jari-jari : $ r = a = b = 6 $
*). Persamaan lingkarannya dengan pusat $(a,b) = (6,6) \, $ dan $ r = 6 $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-6)^2 + (y-6)^2 & = 6^2 \\ (x-6)^2 + (y-6)^2 & = 36 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x-6)^2 + (y-6)^2 = 36 $
iv). Diketahui titik A($x_1,y_1$) dan titik B($x_2,y_2$) merupakan diameter suatu lingkaran. Untuk menentukan persamaan lingkarannya, kita harus menentukan titik pusat dan jari-jarinya. Titik pusat lingkaran adalah titik tengah dari titik A dan B, serta jari-jarinya adalah setengah dari panjang AB (diameter). Silahkan baca materi "menentukan titik tengah antara dua titik".
Titik Pusat : $ \begin{align} (a,b) = \left( \frac{x_1+x_2}{2} , \frac{y_1 + y_2}{2} \right) \end{align} $
Jari-jari : $ \begin{align} r = \frac{1}{2}|AB| = \frac{1}{2}\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \end{align} $
Titik Pusat : $ \begin{align} (a,b) = \left( \frac{x_1+x_2}{2} , \frac{y_1 + y_2}{2} \right) \end{align} $
Jari-jari : $ \begin{align} r = \frac{1}{2}|AB| = \frac{1}{2}\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \end{align} $
Jika titik A(1,3) dan titik B(5,7) merupakan diameter suatu lingkaran, tentukan persamaan lingkaran tersebut!
Penyelesaian :
*).Menentukan titik pusat lingkaran ($a,b$) :
$ \begin{align} (a,b) & = \left( \frac{x_1+x_2}{2} , \frac{y_1 + y_2}{2} \right) \\ & = \left( \frac{1 + 5}{2} , \frac{3 + 7}{2} \right) \\ & = (3,5) \end{align} $
*). Menentukan jari-jari lingkaran :
$ \begin{align} r & = \frac{1}{2}|AB| = \frac{1}{2}\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \\ & = \frac{1}{2}\sqrt{(5-1)^2 + (7-3)^2} \\ & = \frac{1}{2}\sqrt{4^2 + 4^2} \\ & = \frac{1}{2}\sqrt{32} \\ & = \frac{1}{2}. ( 4 \sqrt{2} ) \\ r & = 2 \sqrt{2} \end{align} $
*). Persamaan lingkarannya dengan pusat $(a,b) = (3,5) \, $ dan $ r = 2\sqrt{2} $
$ \begin{align} (x-a)^2 + (y-b)^2 & = r^2 \\ (x-3)^2 + (y-5)^2 & = (2\sqrt{2})^2 \\ (x-3)^2 + (y-5)^2 & = 8 \end{align} $
Jadi, persamaan lingkarannya adalah $ (x-3)^2 + (y-5)^2 = 8 $
v). Lingkaran melalui tiga sebarang titik. Untuk menentukan persamaan Lingkarannya, cukup substitusi ketiga titik yang dilalui ke persamaan umum lingkaran : $ x^2 + y^2 + Ax + By + C = 0 \, $ sehingga terbentuk tiga persamaan. Dari ketiga persamaan tersebut, lakukan eliminasi dan substitusi untuk menentukan nilai $ A, B, \, $ dan $ C \, $ , lalu substitusi kembali nilai $ A, B, \, $ dan $ C \, $ ke bentuk umum persamaan lingkarannya.
Tentukan persamaan lingkaran yang melalui titik (3, -1), (5, 3), dan (6, 2) kemudian tentukan pula pusat dan jari-jari lingkaran. !
Penyelesaian :
*). Bentuk Umum persamaan lingkaran : $ x^2 + y^2 + Ax + By + C = 0 $
*). Substitusi ketiga titik yang dilalui ke bentuk umum.
$ \begin{align} (x,y) = (3,-1) \rightarrow x^2 + y^2 + Ax + By + C & = 0 \\ 3^2 + (-1)^2 + A.3 + B.(-1) + C & = 0 \\ 9 + 1 + 3A - B + C & = 0 \\ 3A - B + C & = - 10 \, \, \, \, \text{....prs(i)} \\ (x,y) = (5,3) \rightarrow x^2 + y^2 + Ax + By + C & = 0 \\ 5^2 + 3^2 + A.5 + B.3 + C & = 0 \\ 25 + 9 + 5A + 3B + C & = 0 \\ 5A + 3B + C & = - 34 \, \, \, \, \text{....prs(ii)} \\ (x,y) = (6,2) \rightarrow x^2 + y^2 + Ax + By + C & = 0 \\ 6^2 + 2^2 + A.6 + B.2 + C & = 0 \\ 36 + 4 + 6A + 2B + C & = 0 \\ 6A + 2B + C & = - 40 \, \, \, \, \text{....prs(iii)} \end{align} $
Terbentuklah 3 persamaan yaitu
$ \begin{align} 3A - B + C & = - 10 \, \, \, \, \text{....prs(i)} \\ 5A + 3B + C & = - 34 \, \, \, \, \text{....prs(ii)} \\ 6A + 2B + C & = - 40 \, \, \, \, \text{....prs(iii)} \end{align} $
*). Selesaikan ketiga persamaan tersebut dengan eliminasi dan substitusi, diperoleh nilai $ A = -8, \, B = -2, \, $ dan $ C = 12 $
Sehingga persamaan lingkarannya :
$ \begin{align} x^2 + y^2 + Ax + By + C & = 0 \\ x^2 + y^2 -8x -2y + 12 & = 0 \end{align} $
Jadi, persamaan lingkarannya adalah $ x^2 + y^2 -8x -2y + 12 = 0 $ .
Nah itulah tadi telah diuraikan mengenai Contoh Soal dan Pembahasan Persamaan Lingkaran. Bagaimana, silakan berkomentar atau kritik, saran ataupun tambahan dari kamu. Kita tahu kita bukan yang sempurna, siapa tahu kamu lebih dan bisa berbagi. Ditunggu komentarnya guys.
Loading...