Selamat Datang kembali di blog freemathlearn. Blog yang membahas seputar matematika dan ilmu sains lainnya. Baiklah untuk kali ini akan kita bahas mengenai
Cara Mencari nilai sin 3 dan 9 derajat. Silakan disimak ya guys!
>
sinA=√1−cos2A2sin9∘=√1−cos2.9∘2sin9∘=√1−cos18∘2=√1−√10+2√542=√4−√10+2√542=√4−√10+2√58=12√4−√10+2√52=12√2−12√10+2√5
Jadi, kita peroleh nilai sin9∘=12√2−12√10+2√5
Sementara dari bentuk rumus cosA=√1+cos2A2 , maka kita peroleh nilai cos9∘=12√2+12√10+2√5
*). Menentukan nilai sin3∘ dengan rumus selisih sudut
sin(A−B)=sinAcosB−cosAsinBsin3∘=sin(18∘−15∘)sin(18∘−15∘)=sin18∘cos15∘−cos18∘sin15∘=−1+√54.12√2+√3−√10+2√54.12√2−√3sin3∘=18((−1+√5).√2+√3−√10+2√5.√2−√3)
Jadi, nilai sin3∘=18((−1+√5).√2+√3−√10+2√5.√2−√3)
*). Menentukan nilai cos3∘ dengan rumus selisih sudut
cos(A−B)=cosAcosB−sinAsinBcos3∘=cos(18∘−15∘)cos(18∘−15∘)=cos18∘cos15∘+sin18∘sin15∘=√10+2√54.12√2+√3+−1+√54.12√2−√3cos3∘=18(√10+2√5.√2+√3+(−1+√5).√2−√3)
Jadi, nilai cos3∘=18(√10+2√5.√2+√3+(−1+√5).√2−√3)
Demikian cara Menentukan nilai sin 3 dan 9 derajat sekaligus nilai cos 3 dan 9 derajat. Semoga pembahasan pada materi ini bermanfaat untuk kita semua terutama bagi yang membutuhkan, terutama untuk pengembangan dalam materi trigonometri. .
Nah itulah tadi telah diuraikan mengenai Cara Mencari nilai sin 3 dan 9 derajat. Bagaimana, silakan berkomentar atau kritik, saran ataupun tambahan dari kamu. Kita tahu kita bukan yang sempurna, siapa tahu kamu lebih dan bisa berbagi. Ditunggu komentarnya guys.
>
Sebelumnya telah kita bahas cara menghitung nilai sin 18 derajat dan nilai cos serta tangen 18 derajat. Kita lanjutkan lagi membahas trigonometri sudut-sudut bukan istimewa yaitu sudut derajat dan sudut 9 derajat. Pada pembahasan Menentukan nilai sin 3 dan 9 derajat ini akan melibatkan nilai dari sin 18 derajat, cos 18 derajat, sin 15 derajat, dan nilai dari cos 15 derajat. Tentu sebelumnya ada beberapa materi atau rumus dasar trigonometri yang harus kita kuasai yaitu trigonometri sudut ganda dan rumus trigonometri pengurangan sudut.
Setelah bisa Menentukan nilai sin 3 dan 9 derajat, pada artikel berikutnya akan saya share nilai sin untuk sudut-sudut lain seperti sin 6 derajat, 21 derajat, 24 derajat, 27 derajat, 33 derajat, 36 derajat, 39 derajat, dan 42 derajat. Jika diperhatikan semua sudut-sudutnya, yang kita hitung adalah sudut-sudut dengan kelipatan 3 derajat.
Pada artikel sebelumnya telah kita peroleh :
sin18∘=−1+√54
cos18∘=√10+2√54
Dari rumus sudut ganda kita peroleh nilai :
sin15∘=12√2−√3
cos15∘=12√2+√3
Setelah bisa Menentukan nilai sin 3 dan 9 derajat, pada artikel berikutnya akan saya share nilai sin untuk sudut-sudut lain seperti sin 6 derajat, 21 derajat, 24 derajat, 27 derajat, 33 derajat, 36 derajat, 39 derajat, dan 42 derajat. Jika diperhatikan semua sudut-sudutnya, yang kita hitung adalah sudut-sudut dengan kelipatan 3 derajat.
Rumus dasar Trigonometri yang digunakan
*). Sudut ganda :
sinA=√1−cos2A2
cosA=√1+cos2A2
*). Rumus trigonometri pengurangan sudut :
sin(A−B)=sinAcosB−cosAsinB
cos(A−B)=cosAcosB−sinAsinB
sinA=√1−cos2A2
cosA=√1+cos2A2
*). Rumus trigonometri pengurangan sudut :
sin(A−B)=sinAcosB−cosAsinB
cos(A−B)=cosAcosB−sinAsinB
Nilai sin 3 derajat dan sin 9 derajat
sin3∘=18((−1+√5).√2+√3−√10+2√5.√2−√3)
sin9∘=12√2−12√10+2√5
sin9∘=12√2−12√10+2√5
sin18∘=−1+√54
cos18∘=√10+2√54
Dari rumus sudut ganda kita peroleh nilai :
sin15∘=12√2−√3
cos15∘=12√2+√3
Loading...
Cara Mencari Nilai sin 3 derajat dan 9 derajat :
*). Nilai sin 9 derajat, dengan sudut ganda :sinA=√1−cos2A2sin9∘=√1−cos2.9∘2sin9∘=√1−cos18∘2=√1−√10+2√542=√4−√10+2√542=√4−√10+2√58=12√4−√10+2√52=12√2−12√10+2√5
Jadi, kita peroleh nilai sin9∘=12√2−12√10+2√5
Sementara dari bentuk rumus cosA=√1+cos2A2 , maka kita peroleh nilai cos9∘=12√2+12√10+2√5
*). Menentukan nilai sin3∘ dengan rumus selisih sudut
sin(A−B)=sinAcosB−cosAsinBsin3∘=sin(18∘−15∘)sin(18∘−15∘)=sin18∘cos15∘−cos18∘sin15∘=−1+√54.12√2+√3−√10+2√54.12√2−√3sin3∘=18((−1+√5).√2+√3−√10+2√5.√2−√3)
Jadi, nilai sin3∘=18((−1+√5).√2+√3−√10+2√5.√2−√3)
*). Menentukan nilai cos3∘ dengan rumus selisih sudut
cos(A−B)=cosAcosB−sinAsinBcos3∘=cos(18∘−15∘)cos(18∘−15∘)=cos18∘cos15∘+sin18∘sin15∘=√10+2√54.12√2+√3+−1+√54.12√2−√3cos3∘=18(√10+2√5.√2+√3+(−1+√5).√2−√3)
Jadi, nilai cos3∘=18(√10+2√5.√2+√3+(−1+√5).√2−√3)
Demikian cara Menentukan nilai sin 3 dan 9 derajat sekaligus nilai cos 3 dan 9 derajat. Semoga pembahasan pada materi ini bermanfaat untuk kita semua terutama bagi yang membutuhkan, terutama untuk pengembangan dalam materi trigonometri. .
Nah itulah tadi telah diuraikan mengenai Cara Mencari nilai sin 3 dan 9 derajat. Bagaimana, silakan berkomentar atau kritik, saran ataupun tambahan dari kamu. Kita tahu kita bukan yang sempurna, siapa tahu kamu lebih dan bisa berbagi. Ditunggu komentarnya guys.
Loading...