Selamat Datang kembali di blog freemathlearn. Blog yang membahas seputar matematika dan ilmu sains lainnya. Baiklah untuk kali ini akan kita bahas mengenai
Pembahasan Jumlah Riemann pada Integral. Silakan disimak ya guys!
>
Nah itulah tadi telah diuraikan mengenai Pembahasan Jumlah Riemann pada Integral. Bagaimana, silakan berkomentar atau kritik, saran ataupun tambahan dari kamu. Kita tahu kita bukan yang sempurna, siapa tahu kamu lebih dan bisa berbagi. Ditunggu komentarnya guys.
>
Pada artikel kali ini kita akan membahas materi Jumlah Riemann pada Integral yang terkait langsung dengan luasan suatu daerah dan bentuk integral tertentu. Sesuai dengan namanya, Riemann adalah seorang ilmuan berkebangsaan Jerman yang lahir di Breselenz, sebuah desa didekat Danneberg di Kerajaan Hanover di Jerman dengan nama lengkap George Friedrich Bernhard Riemann. Salah satu sumbangsihnya yang masih terkenal sampai sekarang adalah, beliau memperkenalkan secara modern tentang definisi integral tentu. Untuk menghormatinya, disebut Intergal Riemann. Pada tulisan ini akan kita pelajari sedikit ilmu yang telah dijabarkan oleh Riemann. Untuk memudahkan dalam mempelajari materi ini, teman-teman harus menguasai materi notasi sigma terlebih dahulu.
Perhatikan daerah yang diarsir berikut ini :

Jika kita diminta untuk menghitung luas daerah yang diarsir di atas, bagaimanakah caranya?
Nah, disinilah ide si jenius Rieman keluar. Caranya, Riemann melakukan pendekatan dengan membagi daerah arsiran tersebut menjadi beberapa persegi panjang, lalu semua luas persegi panjang tersebut dijumlahkan seperti nampak seperti gambar berikut ini.
Dengan notasi sigma, maka bisa kita hitung jumlah seluruh persegi panjangnya.
Persegi panjang 1 memiliki luas A1 dengan panjang Δx1 dan lebar f(x1) .
dengan A1=p×l=f(x1)Δx1
Persegi panjang 2 memiliki luas A2 dengan panjang Δx2 dan lebar f(x2) .
dengan A2=p×l=f(x2)Δx2
Persegi panjang 3 memiliki luas A3 dengan panjang Δx3 dan lebar f(x3) .
dengan A3=p×l=f(x3)Δx3
dan seterusnya ..............
Persegi panjang 8 memiliki luas A8 dengan panjang Δx8 dan lebar f(x8) .
dengan A8=p×l=f(x8)Δx8
Sehingga luas total persegi panjangnya dinyatakan dalam notasi sigma :
A1+A2+A3+...+A8=f(x1)Δx1+f(x2)Δx2+f(x3)Δx3+...+f(x8)Δx8=8∑i=1f(xi)Δxi
Contoh soal jumlah riemann :
1). Tentukan jumlah Riemann dari fungsi yang diperlihatkan oleh gambar berikut.
Penyelesaian :
*). Menentukan luas persegi panjang masing-masing :
Persegi panjang 1 : panjang = 0,7 , titik wakil x1=0,5
sehingga lebar =f(x1)=f(0,5)=(0,5)2−4(0,5)+3=1,25 .
Luas : L1=p×l=0,7×1,25=0,875
Persegi panjang 2 : panjang = 1,7 - 0,7 = 1 , titik wakil x2=1,5
sehingga lebar =f(x2)=f(1,5)=(1,5)2−4(1,5)+3=−0,75=0,75 .
Luas : L2=p×l=1×0,75=0,75
Persegi panjang 3 : panjang = 2,7 - 1,7 = 1 , titik wakil x3=2
sehingga lebar =f(x3)=f(2)=(2)2−4(2)+3=−1=1 .
Luas : L3=p×l=1×1=1
Persegi panjang 4 : panjang = 4 - 2,7 = 1,3 , titik wakil x4=3,5
sehingga lebar =f(x4)=f(3,5)=(3,5)2−4(3,5)+3=1,25 .
Luas : L4=p×l=1,3×1,25=1,625
*). Menentukan jumlah riemannya :
Jumlah riemann =L1+L2+L3+L4=0,875+0,75+1+1,625=4,25
Jadi, jumlah riemann pada gambar adalah 4,25.
2). Misalkan diketahui suatu fungsi f(x)=x pada interval [0, 3], tentukan jumlah Riemann dengan menggunakan 6 subinterval sama panjang dan titik wakilnya :
a). titik ujung kanan subinterval
b). titik tengah subinterval
c). titik ujung kiri subinterval
Penyelesaian :
a). titik ujung kanan subinterval
*). Menentukan panjang setiap subinterval (Δxi) :
Pada interval [0,3] dibagi menjadi 6 subinterval sama panjang, sehingga :
Δxi=Δx=3−06=36=0,5
Untuk dapat menentukan jumlah Riemann fungsi f(x)=x dengan 6 subinterval pada selang [0,3], perhatikan grafik fungsi f(x)=x pada interval [0, 3] dan titik ujung kanan subinterval, berikut:
*). Menentukan titik wakil (xi) :
Karena yang diminta adalah titik ujung kanan subinterval, maka nilai xi yang digunakan adalah sebelah kanan setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi f(x)=x
Subinterval 1 : 0 - 0,5 dengan x1=0,5→f(x1)=f(0,5)=0,5
Subinterval 2 : 0,5 - 1 dengan x2=1→f(x2)=f(1)=1
Subinterval 3 : 1 - 1,5 dengan x3=1,5→f(x3)=f(1,5)=1,5
Subinterval 4 : 1,5 - 2 dengan x4=2→f(x4)=f(2)=2
Subinterval 5 : 2 - 2,5 dengan x5=2,5→f(x5)=f(2,5)=2,5
Subinterval 6 : 2,5 - 3 dengan x6=3→f(x6)=f(3)=3
*). Menentukan jumlah Riemann :
Jumlah Riemann =6∑i=1f(xi)Δxi=6∑i=1f(xi)Δx=f(x1)Δx+f(x2)Δx+f(x3)Δx+f(x4)Δx+f(x5)Δx+f(x6)Δx=[0,5+1+1,5+2+2,5+3]×0,5=[10,5]×0,5=5,25
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 5,25.
b). titik tengah subinterval
Untuk dapat menentukan jumlah Riemann fungsi f(x)=x dengan 6 subinterval pada selang [0,3], perhatikan grafik fungsi f(x)=x pada interval [0, 3] dan titik tengah subinterval, berikut:
*). Menentukan titik wakil (xi) :
Karena yang diminta adalah titik tengah subinterval, maka nilai xi yang digunakan adalah nilai tengah setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi f(x)=x
Subinterval 1 : 0 - 0,5 dengan x1=0,25→f(x1)=f(0,25)=0,25
Subinterval 2 : 0,5 - 1 dengan x2=0,75→f(x2)=f(0,75)=0,75
Subinterval 3 : 1 - 1,5 dengan x3=1,25→f(x3)=f(1,25)=1,25
Subinterval 4 : 1,5 - 2 dengan x4=1,75→f(x4)=f(1,75)=1,75
Subinterval 5 : 2 - 2,5 dengan x5=2,25→f(x5)=f(2,25)=2,25
Subinterval 6 : 2,5 - 3 dengan x6=2,75→f(x6)=f(2,75)=2,75
*). Menentukan jumlah Riemann :
Jumlah Riemann =6∑i=1f(xi)Δxi=6∑i=1f(xi)Δx=f(x1)Δx+f(x2)Δx+f(x3)Δx+f(x4)Δx+f(x5)Δx+f(x6)Δx=[0,25+0,75+1,25+1,75+2,25+2,75]×0,5=[9]×0,5=4,5
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 4,5.
c). titik ujung kiri subinterval
Untuk dapat menentukan jumlah Riemann fungsi f(x)=x dengan 6 subinterval pada selang [0,3], perhatikan grafik fungsi f(x)=x pada interval [0, 3] dan titik ujung kiri subinterval, berikut:
*). Menentukan titik wakil (xi) :
Karena yang diminta adalah titik ujung kanan subinterval, maka nilai xi yang digunakan adalah sebelah kiri setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi f(x)=x
Subinterval 1 : 0 - 0,5 dengan x1=0→f(x1)=f(0)=0
Subinterval 2 : 0,5 - 1 dengan x2=0,5→f(x2)=f(0,5)=0,5
Subinterval 3 : 1 - 1,5 dengan x3=1→f(x3)=f(1)=1
Subinterval 4 : 1,5 - 2 dengan x4=1,5→f(x4)=f(1,5)=1,5
Subinterval 5 : 2 - 2,5 dengan x5=2→f(x5)=f(2)=2
Subinterval 6 : 2,5 - 3 dengan x6=2,5→f(x6)=f(2,5)=2,5
*). Menentukan jumlah Riemann :
Jumlah Riemann =6∑i=1f(xi)Δxi=6∑i=1f(xi)Δx=f(x1)Δx+f(x2)Δx+f(x3)Δx+f(x4)Δx+f(x5)Δx+f(x6)Δx=[0+0,5+1+1,5+2+2,5]×0,5=[7,5]×0,5=3,75
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 3,75.
Catatan :
Sebenarnya untuk menentukan jumlah Riemann, tanpa gambarpun tidak apa-apa.
Perhatikan daerah yang diarsir berikut ini :
Jika kita diminta untuk menghitung luas daerah yang diarsir di atas, bagaimanakah caranya?
Nah, disinilah ide si jenius Rieman keluar. Caranya, Riemann melakukan pendekatan dengan membagi daerah arsiran tersebut menjadi beberapa persegi panjang, lalu semua luas persegi panjang tersebut dijumlahkan seperti nampak seperti gambar berikut ini.
Persegi panjang 1 memiliki luas A1 dengan panjang Δx1 dan lebar f(x1) .
dengan A1=p×l=f(x1)Δx1
Persegi panjang 2 memiliki luas A2 dengan panjang Δx2 dan lebar f(x2) .
dengan A2=p×l=f(x2)Δx2
Persegi panjang 3 memiliki luas A3 dengan panjang Δx3 dan lebar f(x3) .
dengan A3=p×l=f(x3)Δx3
dan seterusnya ..............
Persegi panjang 8 memiliki luas A8 dengan panjang Δx8 dan lebar f(x8) .
dengan A8=p×l=f(x8)Δx8
Sehingga luas total persegi panjangnya dinyatakan dalam notasi sigma :
A1+A2+A3+...+A8=f(x1)Δx1+f(x2)Δx2+f(x3)Δx3+...+f(x8)Δx8=8∑i=1f(xi)Δxi
Definisi Jumlah Riemann
Nilai dari n∑i=1f(xi)Δxi disebut sebagai Jumlah Riemann fungsi f(x) dengan xi adalah titik wakil pada interval ke-i dan Δxi lebar interval ke-i dan n banyak subinterval (banyaknya persegi panjang yang terbentuk) dari interval [a,b] . Titik wakil (xi) kita peroleh dengan tiga cara yaitu titik ujung kiri subinterval, titik tengah subinterval, dan titik ujung kanan subinterval, dimana setiap jenis titik wakil memberikan hasil yang berbeda.
1). Tentukan jumlah Riemann dari fungsi yang diperlihatkan oleh gambar berikut.
*). Menentukan luas persegi panjang masing-masing :
Persegi panjang 1 : panjang = 0,7 , titik wakil x1=0,5
sehingga lebar =f(x1)=f(0,5)=(0,5)2−4(0,5)+3=1,25 .
Luas : L1=p×l=0,7×1,25=0,875
Persegi panjang 2 : panjang = 1,7 - 0,7 = 1 , titik wakil x2=1,5
sehingga lebar =f(x2)=f(1,5)=(1,5)2−4(1,5)+3=−0,75=0,75 .
Luas : L2=p×l=1×0,75=0,75
Persegi panjang 3 : panjang = 2,7 - 1,7 = 1 , titik wakil x3=2
sehingga lebar =f(x3)=f(2)=(2)2−4(2)+3=−1=1 .
Luas : L3=p×l=1×1=1
Persegi panjang 4 : panjang = 4 - 2,7 = 1,3 , titik wakil x4=3,5
sehingga lebar =f(x4)=f(3,5)=(3,5)2−4(3,5)+3=1,25 .
Luas : L4=p×l=1,3×1,25=1,625
*). Menentukan jumlah riemannya :
Jumlah riemann =L1+L2+L3+L4=0,875+0,75+1+1,625=4,25
Jadi, jumlah riemann pada gambar adalah 4,25.
2). Misalkan diketahui suatu fungsi f(x)=x pada interval [0, 3], tentukan jumlah Riemann dengan menggunakan 6 subinterval sama panjang dan titik wakilnya :
a). titik ujung kanan subinterval
b). titik tengah subinterval
c). titik ujung kiri subinterval
Penyelesaian :
a). titik ujung kanan subinterval
*). Menentukan panjang setiap subinterval (Δxi) :
Pada interval [0,3] dibagi menjadi 6 subinterval sama panjang, sehingga :
Δxi=Δx=3−06=36=0,5
Untuk dapat menentukan jumlah Riemann fungsi f(x)=x dengan 6 subinterval pada selang [0,3], perhatikan grafik fungsi f(x)=x pada interval [0, 3] dan titik ujung kanan subinterval, berikut:
Karena yang diminta adalah titik ujung kanan subinterval, maka nilai xi yang digunakan adalah sebelah kanan setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi f(x)=x
Subinterval 1 : 0 - 0,5 dengan x1=0,5→f(x1)=f(0,5)=0,5
Subinterval 2 : 0,5 - 1 dengan x2=1→f(x2)=f(1)=1
Subinterval 3 : 1 - 1,5 dengan x3=1,5→f(x3)=f(1,5)=1,5
Subinterval 4 : 1,5 - 2 dengan x4=2→f(x4)=f(2)=2
Subinterval 5 : 2 - 2,5 dengan x5=2,5→f(x5)=f(2,5)=2,5
Subinterval 6 : 2,5 - 3 dengan x6=3→f(x6)=f(3)=3
*). Menentukan jumlah Riemann :
Jumlah Riemann =6∑i=1f(xi)Δxi=6∑i=1f(xi)Δx=f(x1)Δx+f(x2)Δx+f(x3)Δx+f(x4)Δx+f(x5)Δx+f(x6)Δx=[0,5+1+1,5+2+2,5+3]×0,5=[10,5]×0,5=5,25
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 5,25.
b). titik tengah subinterval
Untuk dapat menentukan jumlah Riemann fungsi f(x)=x dengan 6 subinterval pada selang [0,3], perhatikan grafik fungsi f(x)=x pada interval [0, 3] dan titik tengah subinterval, berikut:
Karena yang diminta adalah titik tengah subinterval, maka nilai xi yang digunakan adalah nilai tengah setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi f(x)=x
Subinterval 1 : 0 - 0,5 dengan x1=0,25→f(x1)=f(0,25)=0,25
Subinterval 2 : 0,5 - 1 dengan x2=0,75→f(x2)=f(0,75)=0,75
Subinterval 3 : 1 - 1,5 dengan x3=1,25→f(x3)=f(1,25)=1,25
Subinterval 4 : 1,5 - 2 dengan x4=1,75→f(x4)=f(1,75)=1,75
Subinterval 5 : 2 - 2,5 dengan x5=2,25→f(x5)=f(2,25)=2,25
Subinterval 6 : 2,5 - 3 dengan x6=2,75→f(x6)=f(2,75)=2,75
*). Menentukan jumlah Riemann :
Jumlah Riemann =6∑i=1f(xi)Δxi=6∑i=1f(xi)Δx=f(x1)Δx+f(x2)Δx+f(x3)Δx+f(x4)Δx+f(x5)Δx+f(x6)Δx=[0,25+0,75+1,25+1,75+2,25+2,75]×0,5=[9]×0,5=4,5
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 4,5.
c). titik ujung kiri subinterval
Untuk dapat menentukan jumlah Riemann fungsi f(x)=x dengan 6 subinterval pada selang [0,3], perhatikan grafik fungsi f(x)=x pada interval [0, 3] dan titik ujung kiri subinterval, berikut:
Karena yang diminta adalah titik ujung kanan subinterval, maka nilai xi yang digunakan adalah sebelah kiri setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi f(x)=x
Subinterval 1 : 0 - 0,5 dengan x1=0→f(x1)=f(0)=0
Subinterval 2 : 0,5 - 1 dengan x2=0,5→f(x2)=f(0,5)=0,5
Subinterval 3 : 1 - 1,5 dengan x3=1→f(x3)=f(1)=1
Subinterval 4 : 1,5 - 2 dengan x4=1,5→f(x4)=f(1,5)=1,5
Subinterval 5 : 2 - 2,5 dengan x5=2→f(x5)=f(2)=2
Subinterval 6 : 2,5 - 3 dengan x6=2,5→f(x6)=f(2,5)=2,5
*). Menentukan jumlah Riemann :
Jumlah Riemann =6∑i=1f(xi)Δxi=6∑i=1f(xi)Δx=f(x1)Δx+f(x2)Δx+f(x3)Δx+f(x4)Δx+f(x5)Δx+f(x6)Δx=[0+0,5+1+1,5+2+2,5]×0,5=[7,5]×0,5=3,75
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 3,75.
Catatan :
Sebenarnya untuk menentukan jumlah Riemann, tanpa gambarpun tidak apa-apa.
Loading...
3). Misalkan diketahui suatu fungsi f(x)=x2 pada interval [0, 3], tentukan jumlah Riemann dengan menggunakan 6 subinterval sama panjang dan titik ujung kanan subinterval sebagai titik wakil tiap-tiap subinterval.
Penyelesaian :
*). Menentukan panjang setiap subinterval (Δxi) :
Pada interval [0,3] dibagi menjadi 6 subinterval sama panjang, sehingga :
Δxi=Δx=3−06=36=0,5
*). Menentukan titik wakil (xi) dengan membagi menjadi 6 subinterval :
Karena yang diminta adalah titik ujung kanan subinterval, maka nilai xi yang digunakan adalah sebelah kanan setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi f(x)=x2
Subinterval 1 : 0 - 0,5 dengan x1=0,5→f(x1)=f(0,5)=0,52=0,25
Subinterval 2 : 0,5 - 1 dengan x2=1→f(x2)=f(1)=12=1
Subinterval 3 : 1 - 1,5 dengan x3=1,5→f(x3)=f(1,5)=1,52=2,25
Subinterval 4 : 1,5 - 2 dengan x4=2→f(x4)=f(2)=22=4
Subinterval 5 : 2 - 2,5 dengan x5=2,5→f(x5)=f(2,5)=2,52=6,25
Subinterval 6 : 2,5 - 3 dengan x6=3→f(x6)=f(3)=32=9
*). Menentukan jumlah Riemann :
Jumlah Riemann =6∑i=1f(xi)Δxi=6∑i=1f(xi)Δx=f(x1)Δx+f(x2)Δx+f(x3)Δx+f(x4)Δx+f(x5)Δx+f(x6)Δx=[0,25+1+2,25+4+6,25+9]×0,5=[22,75]×0,5=11,375
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 11,375.
Perhatikan ketiga gambar luasan berikut ini.
Misalkan kita diminta untuk menghitung luas sebenarnya suatu daerah seperti gambar (c) di atas, maka kita bisa menggunakan jumlah riemann dengan membentuk n subinterval dengan n mendekati tak hingga. Dari gambar (a), nampak masih ada beberapa daerah yang belum terkover oleh persegi panjang yang dibuat, daerah pada gambar (b) juga demikian belum tercover semuanya. Tapi jika nilai Δx nya semakin kecil (atau banyak subintervalnya sampai tak hingga), maka akan terbentuk daerah seperti gambar (c) yang artinya luas sebenarnya sudah bisa kita hitung.
Untuk memudahkan dalam pengerjaan jumlah riemann, sebaiknya kita pelajari rumus umum notasi sigma berikut ini :
i). n∑k=1k=1+2+3+...+n=12n(n+1)
ii). n∑k=1k2=12+22+32+...+n2=16n(n+1)(2n+1)
iii). n∑k=1k3=13+23+33+...+n3=(12n(n+1))2
Baca juga penyelesaian limit tak hingga.
Contoh Soal :
4). Misalkan diberikan suatu fungsi f(x)=x, tentukan integral tentu dari f(x)=x pada interval [0, 3] atau 3∫0xdx
Penyelesaian :
*). Interval yang diminta [a,b]=[0,3]
*). Menentukan nilai Δxi=Δx=b−an=3−0n=3n
*). Menentukan bentuk umum dari f(xi)
x1=0+Δx=0+3n=1×3n
x2=0+2Δx=0+2×3n=2×3n
x3=0+3Δx=0+3×3n=3×3n
dan seterusnya ........
xi=0+iΔx=0+i×3n=i×3n
Untuk bentuk f(x)=x , maka f(xi)=i×3n
*). Menentukan jumlah riemannya :
limn→∞n∑i=1f(xi)Δxi=limn→∞n∑i=1i×3n3n=limn→∞n∑i=1i×9n2=limn→∞9n2n∑i=1i(gunakan rumus notasi sigma)=limn→∞9n2[12n(n+1)]=limn→∞92n(n+1)n2=limn→∞92n2+92nn2=92
Sehingga nilai dari limn→∞n∑i=1f(xi)Δxi=3∫0xdx=92
5). Misalkan diberikan suatu fungsi f(x)=x2, tentukan integral tentu dari f(x)=x2 pada interval [0, 2] atau 2∫0x2dx
Penyelesaian :
*). Interval yang diminta [a,b]=[0,2]
*). Menentukan nilai Δxi=Δx=b−an=2−0n=2n
*). Menentukan bentuk umum dari f(xi)
x1=0+Δx=0+2n=1×2n
x2=0+2Δx=0+2×2n=2×2n
x3=0+3Δx=0+3×2n=3×2n
dan seterusnya ........
xi=0+iΔx=0+i×2n=i×2n
Untuk bentuk f(x)=x2 , maka f(xi)=(i×2n)2=4n2×i2
*). Menentukan jumlah riemannya :
limn→∞n∑i=1f(xi)Δxi=limn→∞n∑i=14n2×i22n=limn→∞n∑i=1i2×8n3=limn→∞8n3n∑i=1i2(gunakan rumus notasi sigma)=limn→∞8n316n(n+1)(2n+1)=limn→∞8n316(2n3+3n2+n)=limn→∞4n313(2n3+3n2+n)=limn→∞8n3+12n2+4n3n3=83
Sehingga nilai dari limn→∞n∑i=1f(xi)Δxi=2∫0x2dx=83
6). Nyatakan limit berikut sebagai suatu integal tentu :
a). limn→∞n∑i=1√4in4n
b). limn→∞n∑i=1(1+2in)2n
c). limn→∞1n(cos(πn)+cos(2πn)+cos(3πn)+...+cos(nπn))
Penyelesaian :
a). limn→∞n∑i=1√4in4n
*). Berdasarkan rumus : limn→∞n∑i=1f(xi)Δxi maka :
*). Δxi=b−an=4n→b−a=4
dengan a=0 maka b−a=4→b−0=4→b=4.
*). Bentuk xi=iΔxi=i4n=4in
f(xi)=√4in=√xi artinya f(x)=√x.
*). Bentuk integral tentunya :
limn→∞n∑i=1√4in4n=b∫af(x)dx=4∫0√xdx
Jadi, bentuk integral tentunya adalah 4∫0√xdx .
b). limn→∞n∑i=1(1+2in)2n
Dari soal ini, bentuk 1+2in , artinya xi=a+iΔxi , sehingga a=1
*). Berdasarkan rumus : limn→∞n∑i=1f(xi)Δxi maka :
*). Δxi=b−an=2n→b−a=2
dengan a=1 maka b−a=2→b−1=2→b=3.
*). Bentuk xi=a+iΔxi=1+i2n=1+2in
f(xi)=(1+2in)=(xi) artinya f(x)=x.
*). Bentuk integral tentunya :
limn→∞n∑i=1(1+2in)2n=b∫af(x)dx=3∫1xdx
Jadi, bentuk integral tentunya adalah 3∫1xdx .
c). limn→∞1n(cos(πn)+cos(2πn)+cos(3πn)+...+cos(nπn))
*). Kita jadikan bentuk notasi sigma :
1n(cos(πn)+cos(2πn)+cos(3πn)+...+cos(nπn))=n∑i=11ncosπ(in)
*). Sehingga soal yang akan kita ubah adalah limn→∞n∑i=11ncosπ(in)
*). Berdasarkan rumus : limn→∞n∑i=1f(xi)Δxi maka :
*). Δxi=b−an=1n→b−a=1
dengan a=0 maka b−a=1→b−0=1→b=1.
*). Bentuk xi=iΔxi=i1n=in
f(xi)=cosπ(in)=cosπ(xi) artinya f(x)=cosπx.
*). Bentuk integral tentunya :
limn→∞n∑i=11ncosπ(in)=b∫af(x)dx=1∫0cosπxdx
Jadi, bentuk integral tentunya adalah 1∫0cosπxdx .
Bagaimana dengan materi Jumlah Riemann yang ada pada artikel ini? Pasti seru dan menyenangkan yah!!!^_^!!! . Untuk penghitungan bentuk integral tentu, kita tidak perlu menggunakan jumlah riemann seperti contoh di atas. Cara pengerjaannya kita menggunakan Teorema Fundamental Kalukulus II, dengan cara ini akan memudahkan kita dalam mengerjakan semua bentuk integral tertentu.
Kita harus bersyukur dengan lahirnya ilmuan Jerma (Riemann) ini, dengan sumbangsih pengetahuannya kita bisa mempelajari dan bisa menghitung luas suatu daerah dengan jumlah Riemann. Meskipun ilmu terus berkembang sedemikian pesat, hasil pemikiran beliau tetap menjadi salah satu acuan bagi kita terutama yang mendalami materi matematika. .
Penyelesaian :
*). Menentukan panjang setiap subinterval (Δxi) :
Pada interval [0,3] dibagi menjadi 6 subinterval sama panjang, sehingga :
Δxi=Δx=3−06=36=0,5
*). Menentukan titik wakil (xi) dengan membagi menjadi 6 subinterval :
Karena yang diminta adalah titik ujung kanan subinterval, maka nilai xi yang digunakan adalah sebelah kanan setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi f(x)=x2
Subinterval 1 : 0 - 0,5 dengan x1=0,5→f(x1)=f(0,5)=0,52=0,25
Subinterval 2 : 0,5 - 1 dengan x2=1→f(x2)=f(1)=12=1
Subinterval 3 : 1 - 1,5 dengan x3=1,5→f(x3)=f(1,5)=1,52=2,25
Subinterval 4 : 1,5 - 2 dengan x4=2→f(x4)=f(2)=22=4
Subinterval 5 : 2 - 2,5 dengan x5=2,5→f(x5)=f(2,5)=2,52=6,25
Subinterval 6 : 2,5 - 3 dengan x6=3→f(x6)=f(3)=32=9
*). Menentukan jumlah Riemann :
Jumlah Riemann =6∑i=1f(xi)Δxi=6∑i=1f(xi)Δx=f(x1)Δx+f(x2)Δx+f(x3)Δx+f(x4)Δx+f(x5)Δx+f(x6)Δx=[0,25+1+2,25+4+6,25+9]×0,5=[22,75]×0,5=11,375
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 11,375.
Perhatikan ketiga gambar luasan berikut ini.
Luas Suatu Daerah dengan Jumlah Riemann
Misalkan kita akan menghitung luas suatu daerah yang dibatasi oleh kurva y=f(x) pada selang interval [a,b] dengan membagi menjadi n subinterval (n menuju tak hingga), maka akan kita peroleh luas sebenarnya dengan perhitungan :
Luas =limn→∞n∑i=1f(xi)Δxi
dengan Δxi=Δx=b−an .
penulisan lainnya : limn→∞n∑i=1f(xi)Δxi=b∫af(x)dx
Catatan :
Bentuk b∫af(x)dx inilah yang disebut sebagai integral Tentu fungsi f(x) pada interval [a,b] .
Luas =limn→∞n∑i=1f(xi)Δxi
dengan Δxi=Δx=b−an .
penulisan lainnya : limn→∞n∑i=1f(xi)Δxi=b∫af(x)dx
Catatan :
Bentuk b∫af(x)dx inilah yang disebut sebagai integral Tentu fungsi f(x) pada interval [a,b] .
Untuk memudahkan dalam pengerjaan jumlah riemann, sebaiknya kita pelajari rumus umum notasi sigma berikut ini :
i). n∑k=1k=1+2+3+...+n=12n(n+1)
ii). n∑k=1k2=12+22+32+...+n2=16n(n+1)(2n+1)
iii). n∑k=1k3=13+23+33+...+n3=(12n(n+1))2
Baca juga penyelesaian limit tak hingga.
Contoh Soal :
4). Misalkan diberikan suatu fungsi f(x)=x, tentukan integral tentu dari f(x)=x pada interval [0, 3] atau 3∫0xdx
Penyelesaian :
*). Interval yang diminta [a,b]=[0,3]
*). Menentukan nilai Δxi=Δx=b−an=3−0n=3n
*). Menentukan bentuk umum dari f(xi)
x1=0+Δx=0+3n=1×3n
x2=0+2Δx=0+2×3n=2×3n
x3=0+3Δx=0+3×3n=3×3n
dan seterusnya ........
xi=0+iΔx=0+i×3n=i×3n
Untuk bentuk f(x)=x , maka f(xi)=i×3n
*). Menentukan jumlah riemannya :
limn→∞n∑i=1f(xi)Δxi=limn→∞n∑i=1i×3n3n=limn→∞n∑i=1i×9n2=limn→∞9n2n∑i=1i(gunakan rumus notasi sigma)=limn→∞9n2[12n(n+1)]=limn→∞92n(n+1)n2=limn→∞92n2+92nn2=92
Sehingga nilai dari limn→∞n∑i=1f(xi)Δxi=3∫0xdx=92
5). Misalkan diberikan suatu fungsi f(x)=x2, tentukan integral tentu dari f(x)=x2 pada interval [0, 2] atau 2∫0x2dx
Penyelesaian :
*). Interval yang diminta [a,b]=[0,2]
*). Menentukan nilai Δxi=Δx=b−an=2−0n=2n
*). Menentukan bentuk umum dari f(xi)
x1=0+Δx=0+2n=1×2n
x2=0+2Δx=0+2×2n=2×2n
x3=0+3Δx=0+3×2n=3×2n
dan seterusnya ........
xi=0+iΔx=0+i×2n=i×2n
Untuk bentuk f(x)=x2 , maka f(xi)=(i×2n)2=4n2×i2
*). Menentukan jumlah riemannya :
limn→∞n∑i=1f(xi)Δxi=limn→∞n∑i=14n2×i22n=limn→∞n∑i=1i2×8n3=limn→∞8n3n∑i=1i2(gunakan rumus notasi sigma)=limn→∞8n316n(n+1)(2n+1)=limn→∞8n316(2n3+3n2+n)=limn→∞4n313(2n3+3n2+n)=limn→∞8n3+12n2+4n3n3=83
Sehingga nilai dari limn→∞n∑i=1f(xi)Δxi=2∫0x2dx=83
6). Nyatakan limit berikut sebagai suatu integal tentu :
a). limn→∞n∑i=1√4in4n
b). limn→∞n∑i=1(1+2in)2n
c). limn→∞1n(cos(πn)+cos(2πn)+cos(3πn)+...+cos(nπn))
Penyelesaian :
a). limn→∞n∑i=1√4in4n
*). Berdasarkan rumus : limn→∞n∑i=1f(xi)Δxi maka :
*). Δxi=b−an=4n→b−a=4
dengan a=0 maka b−a=4→b−0=4→b=4.
*). Bentuk xi=iΔxi=i4n=4in
f(xi)=√4in=√xi artinya f(x)=√x.
*). Bentuk integral tentunya :
limn→∞n∑i=1√4in4n=b∫af(x)dx=4∫0√xdx
Jadi, bentuk integral tentunya adalah 4∫0√xdx .
b). limn→∞n∑i=1(1+2in)2n
Dari soal ini, bentuk 1+2in , artinya xi=a+iΔxi , sehingga a=1
*). Berdasarkan rumus : limn→∞n∑i=1f(xi)Δxi maka :
*). Δxi=b−an=2n→b−a=2
dengan a=1 maka b−a=2→b−1=2→b=3.
*). Bentuk xi=a+iΔxi=1+i2n=1+2in
f(xi)=(1+2in)=(xi) artinya f(x)=x.
*). Bentuk integral tentunya :
limn→∞n∑i=1(1+2in)2n=b∫af(x)dx=3∫1xdx
Jadi, bentuk integral tentunya adalah 3∫1xdx .
c). limn→∞1n(cos(πn)+cos(2πn)+cos(3πn)+...+cos(nπn))
*). Kita jadikan bentuk notasi sigma :
1n(cos(πn)+cos(2πn)+cos(3πn)+...+cos(nπn))=n∑i=11ncosπ(in)
*). Sehingga soal yang akan kita ubah adalah limn→∞n∑i=11ncosπ(in)
*). Berdasarkan rumus : limn→∞n∑i=1f(xi)Δxi maka :
*). Δxi=b−an=1n→b−a=1
dengan a=0 maka b−a=1→b−0=1→b=1.
*). Bentuk xi=iΔxi=i1n=in
f(xi)=cosπ(in)=cosπ(xi) artinya f(x)=cosπx.
*). Bentuk integral tentunya :
limn→∞n∑i=11ncosπ(in)=b∫af(x)dx=1∫0cosπxdx
Jadi, bentuk integral tentunya adalah 1∫0cosπxdx .
Bagaimana dengan materi Jumlah Riemann yang ada pada artikel ini? Pasti seru dan menyenangkan yah!!!^_^!!! . Untuk penghitungan bentuk integral tentu, kita tidak perlu menggunakan jumlah riemann seperti contoh di atas. Cara pengerjaannya kita menggunakan Teorema Fundamental Kalukulus II, dengan cara ini akan memudahkan kita dalam mengerjakan semua bentuk integral tertentu.
Kita harus bersyukur dengan lahirnya ilmuan Jerma (Riemann) ini, dengan sumbangsih pengetahuannya kita bisa mempelajari dan bisa menghitung luas suatu daerah dengan jumlah Riemann. Meskipun ilmu terus berkembang sedemikian pesat, hasil pemikiran beliau tetap menjadi salah satu acuan bagi kita terutama yang mendalami materi matematika. .
Nah itulah tadi telah diuraikan mengenai Pembahasan Jumlah Riemann pada Integral. Bagaimana, silakan berkomentar atau kritik, saran ataupun tambahan dari kamu. Kita tahu kita bukan yang sempurna, siapa tahu kamu lebih dan bisa berbagi. Ditunggu komentarnya guys.
Loading...